Graphing Lines

Slope-Intercept form of equation:

\[y = mx + b \]

\(m \) : slope \(b \) : \(y \)-intercept

Note that it is in the form of \(y = \) __________

Ex. Given \(y = \frac{2}{5}x - 1 \)

1. **Table method:** pick good \(x \)-values
 (if there is a fraction for slope, pick the denominator)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = \frac{2}{5}x - 1)</th>
<th>((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>\frac{2}{5}(-5) - 1</td>
<td>(-5, -3)</td>
</tr>
<tr>
<td>0</td>
<td>\frac{2}{5}(0) - 1</td>
<td>(0, -1)</td>
</tr>
<tr>
<td>5</td>
<td>\frac{2}{5}(5) - 1</td>
<td>(5, 1)</td>
</tr>
</tbody>
</table>

Plot

2. **Slope-intercept method:** \(m = \frac{2}{5}, \ b = -1 \)
 - Start at \((0, b)\)
 - Move according to slope \(\frac{\text{rise (up/down)}}{\text{run (left/right)}} \)
 - Plot

 * Start at \((0, -1)\)
 * Slope is \(\frac{2}{5} \Rightarrow \) move up 2, right 5

General form of line:

\[ax + by = c \]

(Note that \(x \) and \(y \) terms are on the same side, \(d = \) sign)

Ex. \(2x + 3y = 6 \)

1. **Intercepts method**
 (not always the most straightforward because coordinates might be fractions)
 - Find \(x \)-int by setting \(y = 0 \)
 \(\Rightarrow (x, 0) \)
 \(2x + 3(0) = 6 \)
 \(2x = 6 \)
 \(x = 3 \Rightarrow (3, 0) \)
 - Find \(y \)-int by setting \(x = 0 \)
 \(2(0) + 3y = 6 \)
 \(3y = 6 \)
 \(y = 2 \Rightarrow (0, 2) \)

Plot

2. **Change to \(y = mx + b \) by solving for \(y \) a plot using slope-intercept method.**

\[2x + 3y = 6 \]
\[-2x \]
\[\frac{3y}{3} = \frac{-2x + 6}{3} \]
\[y = -\frac{2}{3}x + 2 \]

\(m = -\frac{2}{3} \Rightarrow \) move down 2, right 3

\(y \)-int = \((0, 2)\)